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5
(a) Take the phases of both waves to be zero at the front surfaces of the layers. The phase of
the first wave at the back surface of the glass is given by Á1 = k1L¡ !t, where k1 (= 2¼=¸1) is
the angular wave number and ¸1 is the wavelength in glass. Similarly, the phase of the second
wave at the back surface of the plastic is given by Á2 = k2L ¡ !t, where k2 (= 2¼=¸2) is the
angular wave number and ¸2 is the wavelength in plastic. The angular frequencies are the same
since the waves have the same wavelength in air and the frequency of a wave does not change
when the wave enters another medium. The phase difference is

Á1 ¡ Á2 = (k1 ¡ k2)L = 2¼
µ
1
¸1
¡ 1
¸2

¶
L :

Now ¸1 = ¸air=n1, where ¸air is the wavelength in air and n1 is the index of refraction of the
glass. Similarly, ¸2 = ¸air=n2, where n2 is the index of refraction of the plastic. This means that
the phase difference is Á1¡Á2 = (2¼=¸air)(n1¡n2)L. The value of L that makes this 5:65 rad is

L =
(Á1 ¡ Á2)¸air
2¼(n1 ¡ n2) =

5:65(400£ 10¡9 m)
2¼(1:60¡ 1:50) = 3:60£ 10¡6 m :

(b) 5:65 rad is less than 2¼ rad (= 6:28 rad), the phase difference for completely constructive
interference, and greater than ¼ rad (= 3:14 rad), the phase difference for completely destruc-
tive interference. The interference is therefore intermediate, neither completely constructive nor
completely destructive. It is, however, closer to completely constructive than to completely de-
structive.

15
Interference maxima occur at angles µ such that d sin µ = m¸, where d is the separation of the
sources, ¸ is the wavelength, and m is an integer. Since d = 2:0m and ¸ = 0:50m, this means
that sin µ = 0:25m. You want all values of m (positive and negative) for which j0:25mj ∙ 1.
These are ¡4, ¡3, ¡2, ¡1, 0, +1, +2, +3, and +4. For each of these except ¡4 and +4, there are
two different values for µ. A single value of µ (¡90±) is associated with m = ¡4 and a single
value (¡90±) is associated with m = +4. There are sixteen different angles in all and therefore
sixteen maxima.

17
The angular positions of the maxima of a two-slit interference pattern are given by d sin µ = m¸,
where d is the slit separation, ¸ is the wavelength, and m is an integer. If µ is small, sin µ may be
approximated by µ in radians. Then dµ = m¸. The angular separation of two adjacent maxima
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is ¢µ = ¸=d. Let ¸0 be the wavelength for which the angular separation is 10:0% greater. Then
1:10¸=d = ¸0=d or ¸0 = 1:10¸ = 1:10(589 nm) = 648 nm.

19
The condition for a maximum in the two-slit interference pattern is d sin µ = m¸, where d is the
slit separation, ¸ is the wavelength, m is an integer, and µ is the angle made by the interfering
rays with the forward direction. If µ is small, sin µ may be approximated by µ in radians. Then
dµ = m¸ and the angular separation of adjacent maxima, one associated with the integer m and
the other associated with the integer m + 1, is given by ¢µ = ¸=d. The separation on a screen a
distance D away is given by ¢y = D¢µ = ¸D=d. Thus

¢y =
(500£ 10¡9 m)(5:40m)

1:20£ 10¡3 m = 2:25£ 10¡3 m = 2:25mm :

21
The maxima of a two-slit interference pattern are at angles µ that are given by d sin µ = m¸,
where d is the slit separation, ¸ is the wavelength, and m is an integer. If µ is small, sin µ may
be replaced by µ in radians. Then dµ = m¸. The angular separation of two maxima associated
with different wavelengths but the same value of m is ¢µ = (m=d)(¸2 ¡ ¸1) and the separation
on a screen a distance D away is

¢y = D tan¢µ ¼ D¢µ =
∙
mD

d

¸
(¸2 ¡ ¸1)

=
∙

3(1:0m)
5:0£ 10¡3 m

¸
(600£ 10¡9 m¡ 480£ 10¡9 m) = 7:2£ 10¡5 m :

The small angle approximation tan¢µ ¼ ¢µ was made. ¢µ must be in radians.

29
The phasor diagram is shown to the right. Here E1 = 1:00, E2 = 2:00,
and Á = 60±. The resultant amplitude Em is given by the trigonometric
law of cosines:

E2m = E21 + E22 ¡ 2E1E2 cos(180± ¡ Á) ;
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Á

Em =
p
(1:00)2 + (2:00)2 ¡ 2(1:00)(2:00) cos 120± = 2:65 :

39
For complete destructive interference, you want the waves reflected from the front and back of
the coating to differ in phase by an odd multiple of ¼ rad. Each wave is incident on a medium of
higher index of refraction from a medium of lower index, so both suffer phase changes of ¼ rad
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on reflection. If L is the thickness of the coating, the wave reflected from the back surface travels
a distance 2L farther than the wave reflected from the front. The phase difference is 2L(2¼=¸c),
where ¸c is the wavelength in the coating. If n is the index of refraction of the coating, ¸c = ¸=n,
where ¸ is the wavelength in vacuum, and the phase difference is 2nL(2¼=¸). Solve

2nL
µ
2¼
¸

¶
= (2m + 1)¼

for L. Here m is an integer. The result is

L =
(2m + 1)¸
4n

:

To find the least thickness for which destructive interference occurs, take m = 0. Then

L =
¸

4n
=
600£ 10¡9 m
4(1:25)

= 1:2£ 10¡7 m :

41
Since n1 is greater than n2 there is no change in phase on reflection from the first surface. Since
n2 is less than n3 there is a change in phase of ¼ rad on reflection from the second surface. One
wave travels a distance 2L further than the other, so the difference in the phases of the two waves
is 4¼L=¸2 +¼, where ¸2 is the wavelength in medium 2. Since interference produces a minimum
the phase difference must be an odd multiple of ¼. Thus 4¼L=¸2 + ¼ = (2m + 1)¼, where m is
an integer or zero. Replace ¸2 with ¸=n2, where ¸ is the wavelength in air, and solve for ¸. The
result is

¸ =
4Ln2
2m

=
2(380 nm)(1:1:34)

m
=
1018 nm
m

:

For m = 1, ¸ = 1018 nm and for m = 2, ¸ = (1018 nm)=2 = 509 nm. Other wavelengths are
shorter. Only ¸ = 509 nm is in the visible range.

47
There is a phase shift on reflection of ¼ for both waves and one wave travels a distance 2L
further than the other, so the phase difference of the reflected waves is 4¼L=¸2, where ¸2 is the
wavelength in medium 2. Since the result of the interference is a minimum of intensity the phase
difference must be an odd multiple of ¼. Thus 4¼L=¸2 = (2m + 1)¼, where m is an integer or
zero. Replace ¸2 with ¸=n2, where ¸ is the wavelength in air, and solve for ¸. The result is

¸ =
4Ln2
2m + 1

=
4(210 nm)(1:46)

2m + 1
=
1226 nm
2m + 1

:

For m = 1, ¸ = (1226 nm)=3 = 409 nm. This is in the visible range. Other values of m are
associated with wavelengths that are not in the visible range.

53
(a) Oil has a greater index of refraction than air and water has a still greater index of refraction.
There is a change of phase of ¼ rad at each reflection. One wave travels a distance 2L further
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than the other, where L is the thickness of the oil. The phase difference of the two reflected
waves is 4¼L=¸o, where ¸ is the wavelength in oil, and this must be equal to a multiple of 2¼
for a bright reflection. Thus 4¼L=¸o = 2m¼, where m is an integer. Use ¸ = no¸o, where no is
the index of refraction for oil, to find the wavelength in air. The result is

¸ =
2noL
m

=
2(1:20)(460 nm)

m
=
1104 nm
m

:

For m = 1, ¸ = 1104 nm; for m = 2, ¸ = (1104 nm)=2 = 552 nm; and for m = 3, ¸ =
(1104 nm)=3 = 368 nm. Other wavelengths are shorter. Only ¸ = 552 nm is in the visible range.
(b) A maximum in transmission occurs for wavelengths for which the reflection is a minimum.
The phases of the two reflected waves then differ by an odd multiple of ¼ rad. This means
4¼L=¸o = (2m + 1)¼ and

¸ =
4noL
2m + 1

=
4(1:20)(460 nm)

2m + 1
=
2208 nm
2m + 1

:

For m = 0, ¸ = 2208 nm; for m = 1, ¸ = (2208 nm)=3 = 736 nm; and for m = 3, ¸ =
(2208 nm)=5 = 442 nm. Other wavelengths are shorter. Only ¸ = 442 nm falls in the visible
range.

63
One wave travels a distance 2L further than the other. This wave is reflected twice, once from
the back surface and once from the front surface. Since n2 is greater than n3 there is no change
in phase at the back-surface reflection. Since n1 is greater than n2 there is a phase change of ¼
at the front-surface reflection. Thus the phase difference of the two waves as they exit material 2
is 4¼L=¸2 + ¼, where ¸2 is the wavelength in material 2. For a maximum in intensity the phase
difference is a multiple of 2¼. Thus 4¼L=¸2 + ¼ = 2m¼, where m is an integer. The solution
for ¸2 is

¸2 =
4L

2m¡ 1 =
4(415 nm)
2m¡ 1 =

1660 nm
2m¡ 1 :

The wavelength in air is

¸ = n2¸2 =
(1:59)(1660 nm)

2m¡ 1 =
2639 nm
2m¡ 1 :

For m = 1, ¸ = 2639 nm; for m = 2, ¸ = 880 nm; for m = 3, ¸ = 528 nm; and for m = 4,
¸ = 377 nm. Other wavelengths are shorter. Only ¸ = 528 nm is in the visible range.

71
Consider the interference of waves reflected from the top and bottom surfaces of the air film. The
wave reflected from the upper surface does not change phase on reflection but the wave reflected
from the bottom surface changes phase by ¼ rad. At a place where the thickness of the air film
is L, the condition for fully constructive interference is 2L = (m + 1

2)¸, where ¸ (= 683 nm) is
the wavelength and m is an integer. This is satisfied for m = 140:

L =
(m + 1

2)¸
2

=
(140:5)(683£ 10¡9 m)

2
= 4:80£ 10¡5 m = 0:048mm :
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At the thin end of the air film, there is a bright fringe. It is associated with m = 0. There are,
therefore, 140 bright fringes in all.

75
Consider the interference pattern formed by waves reflected from the upper and lower surfaces
of the air wedge. The wave reflected from the lower surface undergoes a ¼-rad phase change
while the wave reflected from the upper surface does not. At a place where the thickness of
the wedge is d, the condition for a maximum in intensity is 2d = (m + 1

2)¸, where ¸ is the
wavelength in air and m is an integer. Thus d = (2m + 1)¸=4. As the geometry of Fig. 35–47
shows, d = R¡pR2 ¡ r2, where R is the radius of curvature of the lens and r is the radius of
a Newton’s ring. Thus (2m + 1)¸=4 = R¡pR2 ¡ r2. Solve for r. First rearrange the terms so
the equation becomes p

R2 ¡ r2 = R¡ (2m + 1)¸
4

:

Now square both sides and solve for r2. When you take the square root, you should get

r =
r
(2m + 1)R¸

2
¡ (2m + 1)

2¸2

16
:

If R is much larger than a wavelength, the first term dominates the second and

r =
r
(2m + 1)R¸

2
:

81
Let Á1 be the phase difference of the waves in the two arms when the tube has air in it and let Á2
be the phase difference when the tube is evacuated. These are different because the wavelength
in air is different from the wavelength in vacuum. If ¸ is the wavelength in vacuum, then the
wavelength in air is ¸=n, where n is the index of refraction of air. This means

Á1 ¡ Á2 = 2L
∙
2¼n
¸
¡ 2¼
¸

¸
=
4¼(n¡ 1)L

¸
;

where L is the length of the tube. The factor 2 arises because the light traverses the tube twice,
once on the way to a mirror and once after reflection from the mirror.
Each shift by one fringe corresponds to a change in phase of 2¼ rad, so if the interference pattern
shifts by N fringes as the tube is evacuated,

4¼(n¡ 1)L
¸

= 2N¼

and

n = 1 +
N¸

2L
= 1 +

60(500£ 10¡9 m)
2(5:0£ 10¡2 m) = 1:00030 :
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87
Suppose the wave that goes directly to the receiver travels a distance L1 and the reflected wave
travels a distance L2. Since the index of refraction of water is greater than that of air this last wave
suffers a phase change on reflection of half a wavelength. To obtain constructive interference at
the receiver the difference L2 ¡ L2 in the distances traveled must be an odd multiple of a half
wavelength.
Look at the diagram on the right. The right triangle
on the left, formed by the vertical line from the water
to the transmitter T, the ray incident on the water,
and the water line, gives Da = a= tan µ and the right
triangle on the right, formed by the vertical line from
the water to the receiver R, the reflected ray, and the
water line gives Db = x= tan µ. Since Da +Db = D,

tan µ =
a + x
D

: Ã¡¡¡ Da ¡¡¡!Ã¡ Db ¡!
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#
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²T

R²

Use the identity sin2 µ = tan2 µ=(1 + tan2 µ) to show that sin µ = (a + x)=
p
D2 + (a + x)2. This

means

L2a =
a

sin µ
=
a
p
D2 + (a + x)2
a + x

and

L2b =
x

sin µ
=
x
p
D2 + (a + x)2

a + x
;

so

L2 = L2a + L2b =
(a + x)

p
D2 + (a + x)2

a + x
=
p
D2 + (a + x)2 :

Use the binomial theorem, with D2 large and a2 + x2 small, to approximate this expression:
L2 ¼ D + (a + x)2=2D.
The distance traveled by the direct wave is L1 =

p
D2 + (a¡ x)2. Use the binomial theorem to

approximate this expression: L1 ¼ D + (a¡ x)2=2D. Thus

L2 ¡ L1 ¼ D + a
2 + 2ax + x2

2D
¡D ¡ a

2 ¡ 2ax + x2
2D

=
2ax
D
:

Set this equal to (m + 1
2)¸, where m is zero or a positive integer. Solve for x. The result is

x = (m + 1
2)(D=2a)¸.

89
Bright fringes occur at an angle µ such that d sin µ = m¸, where d is the slit separation, ¸ is the
wavelength in the medium of propagation, and m is an integer. Near the center of the pattern the
angles are small and sin µ can be approximated by µ in radians. Thus µ = m¸=d and the angular
separation of two adjacent bright fringes is ¢µ = ¸=d. When the arrangement is immersed in
water the angular separation of the fringes becomes ¢µ0 = ¸w=d, where ¸w is the wavelength in
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water. Since ¸w = ¸=nw, where nw is the index of refraction of water, ¢µ0 = ¸=nwd = (¢µ)=nw.
Since the units of the angles cancel from this equation we may substitute the angles in degrees
and obtain ¢µ0 = 0:30±=1:33 = 0:23±.

93
(a) For wavelength ¸ dark bands occur where the path difference is an odd multiple of ¸=2. That
is, where the path difference is (2m + 1)¸=2, where m is an integer. The fourth dark band from
the central bright fringe is associated with m = 3 and is 7¸=2 = 7(500 nm)=2 = 1750 nm.
(b) The angular position µ of the first bright band on either side of the central band is given by
sin µ = ¸=d, where d is the slit separation. The distance on the screen is given by ¢y = D tan µ,
where D is the distance from the slits to the screen. Because µ is small its sine and tangent are
very nearly equal and ¢y = D sin µ = D¸=d.
Dark bands have angular positions that are given by sin µ = (m + 1

2)¸=d and, for the fourth dark
band, m = 3 and sin µ4 = (7=2)¸=d. Its distance on the screen from the central fringe is ¢y4 =
D tan µ4 = D sin µ4 = 7D¸=2d. This means that D¸=d = 2¢y4=7 = 2(1:68 cm)=7 = 0:48 cm.
Note that this is ¢y.

99
Minima occur at angles µ for which sin µ = (m + 1

2)¸=d, where ¸ is the wavelength, d is the slit
separation, and m is an integer. For the first minimum, m = 0 and sin µ1 = ¸=2d. For the tenth
minimum, m = 9 and sin µ10 = 19¸=2d.
The distance on the screen from the central fringe to a minimum is y = D tan µ, where D is the
distance from the slits to the screen. Since the angle is small we may approximate its tangent
with its sine and write y = D sin µ = D(m + 1

2)¸=d. Thus the separation of the first and tenth
minima is

¢y =
D

d

µ
19¸
2
¡ ¸
2

¶
=
9D¸
d

and
¸ =

d¢y

9D
=
(0:150£ 10¡3 m)(18:0£ 10¡3 m)

9(50:0£ 10¡2 m) = 6:00£ 10¡7 m :

103
The difference in the path lengths of the two beams is 2x, so their difference in phase when
they reach the detector is Á = 4¼x=¸, where ¸ is the wavelength. Assume their amplitudes
are the same. According to Eq. 35–22 the intensity associated with the addition of two waves
is proportional to the square of the cosine of half their phase difference. Thus the intensity of
the light observed in the interferometer is proportional to cos2(2¼x=¸). Since the intensity is
maximum when x = 0 (and the arms have equal lengths), the constant of proportionality is the
maximum intensity Im and I = Im cos2(2¼x=¸).
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