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3

(a) Use Gauss’ law for magnetism:
H
~B ¢ d ~A = 0. Write H ~B ¢ d ~A = ©1 + ©2 + ©C , where ©1

is the magnetic flux through the first end mentioned, ©2 is the magnetic flux through the second
end mentioned, and ©C is the magnetic flux through the curved surface. Over the first end, the
magnetic field is inward, so the flux is ©1 = ¡25:0¹Wb. Over the second end, the magnetic
field is uniform, normal to the surface, and outward, so the flux is ©2 = AB = ¼r2B, where A
is the area of the end and r is the radius of the cylinder. Its value is

©2 = ¼(0:120m)2(1:60£ 10¡3 T) = +7:24£ 10¡5 Wb = +72:4¹Wb :
Since the three fluxes must sum to zero,

©C = ¡©1 ¡ ©2 = 25:0¹Wb¡ 72:4¹Wb = ¡47:4¹Wb :
(b) The minus sign indicates that the flux is inward through the curved surface.

5
Consider a circle of radius r (= 6:0mm), between the plates and with its center on the axis of
the capacitor. The current through this circle is zero, so the Ampere-Maxwell law becomesI

~B ¢ d~s = ¹0²0d©E
dt

;

where ~B is the magnetic field at points on the circle and ©E is the electric flux through the
circle. The magnetic field is tangent to the circle at all points on it, so

H
~B ¢ d~s = 2¼rB. The

electric flux through the circle is ©E = ¼R2E, where R (= 3:0mm) is the radius of a capacitor
plate. When these substitutions are made, the Ampere-Maxwell law becomes

2¼rB = ¹0²0¼R2
dE

dt
:

Thus

dE

dt
=
2rB
¹0²0R2

=
2(6:0£ 10¡3 m)(2:0£ 10¡7 T)

(4¼ £ 10¡7 H=m)(8:85£ 10¡12 Fm)(3:0£ 10¡3 m)2 = 2:4£ 10
13 V=m ¢ s :

13
The displacement current is given by

id = ²0A
dE

dt
;
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where A is the area of a plate and E is the magnitude of the electric field between the plates.
The field between the plates is uniform, so E = V=d, where V is the potential difference across
the plates and d is the plate separation. Thus

id =
²0A

d

dV

dt
:

Now ²0A=d is the capacitance C of a parallel-plate capacitor without a dielectric, so

id = C
dV

dt
:

21
(a) For a parallel-plate capacitor, the charge q on the positive plate is given by q = (²0A=d)V ,
where A is the plate area, d is the plate separation, and V is the potential difference between the
plates. In terms of the electric field E between the plates, V = Ed, so q = ²0AE = ²0©E , where
©E is the total electric flux through the region between the plates. The true current into the
positive plate is i = dq=dt = ²0 d©E=dt = id total, where id total is the total displacement current
between the plates. Thus id total = 2:0A.
(b) Since id total = ²0 d©E=dt = ²0AdE=dt,

dE

dt
=
id total
²0A

=
2:0A

(8:85£ 10¡12 F=m)(1:0m)2 = 2:3£ 10
11 V=m ¢ s :

(c) The displacement current is uniformly distributed over the area. If a is the area enclosed by
the dashed lines and A is the area of a plate, then the displacement current through the dashed
path is

id enc =
a

A
id total =

(0:50m)2

(1:0m)2
(2:0A) = 0:50A :

(d) According to Maxwell’s law of induction,I
~B ¢ d~s = ¹0id enc = (4¼ £ 10¡7 H=m)(0:50A) = 6:3£ 10¡7 T ¢m :

Notice that the integral is around the dashed path and the displacement current on the right
side of the Maxwell’s law equation is the displacement current through that path, not the total
displacement current.

35
(a) The z component of the orbital angular momentum is given by Lorb, z = m`h=2¼, where h is
the Planck constant. Since m` = 0, Lorb, z = 0.
(b) The z component of the orbital contribution to the magnetic dipole moment is given by
¹orb, z = ¡m`¹B , where ¹B is the Bohr magneton. Since m` = 0, ¹orb, z = 0.
(c) The potential energy associated with the orbital contribution to the magnetic dipole moment
is given by U = ¡¹orb, zBext, where Bext is the z component of the external magnetic field. Since
¹orb, z = 0, U = 0.
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(d) The z component of the spin magnetic dipole moment is either +¹B or ¡¹B , so the potential
energy is either

U = ¡¹BBext = ¡(9:27£ 10¡24 J=T)(35£ 10¡3 T) = ¡3:2£ 10¡25 J :

or U = +3:2£ 10¡25 J.
(e) Substitute m` into the equations given above. The z component of the orbital angular
momentum is

Lorb, z =
m`h

2¼
=
(¡3)(6:626£ 10¡34 J ¢ s)

2¼
= ¡3:2£ 10¡34 J ¢ s :

(f) The z component of the orbital contribution to the magnetic dipole moment is

¹orb, z = ¡m`¹B = ¡(¡3)(9:27£ 10¡24 J=T) = 2:8£ 10¡23 J=T :

(g) The potential energy associated with the orbital contribution to the magnetic dipole moment
is

U = ¡¹orb, zBext = ¡(2:78£ 10¡23 J=T)(35£ 10¡3 T) = ¡9:7£ 10¡25 J :
(h) The potential energy associated with spin does not depend on m`. It is §3:2£ 10¡25 J.

39
The magnetization is the dipole moment per unit volume, so the dipole moment is given by
¹ = MV , where M is the magnetization and V is the volume of the cylinder. Use V = ¼r2L,
where r is the radius of the cylinder and L is its length. Thus

¹ =M¼r2L = (5:30£ 103 A=m)¼(0:500£ 10¡2 m)2(5:00£ 10¡2 m) = 2:08£ 10¡2 J=T :

45
(a) The number of atoms per unit volume in states with the dipole moment aligned with the
magnetic field is N+ = Ae¹B=kT and the number per unit volume in states with the dipole
moment antialigned is N¡ = Ae¡¹B=kT , where A is a constant of proportionality. The total
number of atoms per unit volume is N = N+ +N¡ = A

¡
e¹B=kT + e¡¹B=kT

¢
. Thus

A =
N

e¹B=kT + e¡¹B=kT
:

The magnetization is the net dipole moment per unit volume. Subtract the magnitude of the total
dipole moment per unit volume of the antialigned moments from the total dipole moment per unit
volume of the aligned moments. The result is

M =
N¹e¹B=kT ¡N¹e¡¹B=kT

e¹B=kT + e¡¹B=kT
=
N¹

¡
e¹B=kT ¡ e¡¹B=kT ¢
e¹B=kT + e¡¹B=kT

= N¹ tanh(¹B=kT ) :
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(b) If ¹B ¿ kT , then e¹B=kT ¼ 1 +¹B=kT and e¡¹B=kT ¼ 1¡¹B=kT . (See Appendix E for
the power series expansion of the exponential function.) The expression for the magnetization
becomes

M ¼ N¹
£
(1 + ¹B=kT )¡ (1¡ ¹B=kT )¤
(1 + ¹B=kT ) + (1¡ ¹B=kT ) =

N¹2B

kT
:

(c) If ¹B À kT , then e¡¹B=kT is negligible compared to e¹B=kT in both the numerator and
denominator of the expression for M . Thus

M ¼ N¹e¹B=kT

e¹B=kT
= N¹ :

(d) The expression for M predicts that it is linear in B=kT for ¹B=kT small and independent
of B=kT for ¹B=kT large. The figure agrees with these predictions.

47
(a) The field of a dipole along its axis is given by Eq. 29–27:

~B =
¹0
2¼

~¹

z3
;

where ¹ is the dipole moment and z is the distance from the dipole. Thus the magnitude of the
magnetic field is

B =
(4¼ £ 10¡7 T ¢m=A)(1:5£ 10¡23 J=T)

2¼(10£ 10¡9 m)3 = 3:0£ 10¡6 T :

(b) The energy of a magnetic dipole with dipole moment ~¹ in a magnetic field ~B is given by
U = ¡~¹ ¢ ~B = ¡¹B cosÁ, where Á is the angle between the dipole moment and the field. The
energy required to turn it end for end (from Á = 0± to Á = 180±) is

¢U = ¡¹B(cos 180± ¡ cos 0±) = 2¹B = 2(1:5£ 10¡23 J=T)(3:0£ 10¡6 T)
= 9:0£ 10¡29 J = 5:6£ 10¡10 eV :

The mean kinetic energy of translation at room temperature is about 0:04 eV (see Eq. 19–24 or
Sample Problem 32–3). Thus if dipole-dipole interactions were responsible for aligning dipoles,
collisions would easily randomize the directions of the moments and they would not remain
aligned.

53
(a) If the magnetization of the sphere is saturated, the total dipole moment is ¹total = N¹, where
N is the number of iron atoms in the sphere and ¹ is the dipole moment of an iron atom. We
wish to find the radius of an iron sphere with N iron atoms. The mass of such a sphere is Nm,
where m is the mass of an iron atom. It is also given by 4¼½R3=3, where ½ is the density of
iron and R is the radius of the sphere. Thus Nm = 4¼½R3=3 and

N =
4¼½R3

3m
:
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Substitute this into ¹total = N¹ to obtain

¹total =
4¼½R3¹
3m

:

Solve for R and obtain

R =
∙
3m¹total
4¼½¹

¸1=3
:

The mass of an iron atom is

m = 56 u = (56 u)(1:66£ 10¡27 kg=u) = 9:30£ 10¡26 kg :
So

R =

"
3(9:30£ 10¡26 kg)(8:0£ 1022 J=T)
4¼(14£ 103 kg=m3)(2:1£ 10¡23 J=T)

#1=3
= 1:8£ 105 m :

(b) The volume of the sphere is

Vs =
4¼
3
R3 =

4¼
3
(1:82£ 105 m)3 = 2:53£ 1016 m3

and the volume of Earth is

Ve =
4¼
3
(6:37£ 106 m)3 = 1:08£ 1021 m3 ;

so the fraction of Earth’s volume that is occupied by the sphere is

2:53£ 1016 m3
1:08£ 1021 m3 = 2:3£ 10

¡5 :

The radius of Earth was obtained from Appendix C.

55
(a) The horizontal and vertical directions are perpendicular to each other, so the magnitude of
the field is

B =
q
B2h +B2v =

¹0¹

4¼r3

q
cos2 ¸m + 4 sin2 ¸m =

¹0¹

4¼r3

q
1¡ sin2 ¸m + 4 sin2 ¸m

=
¹0¹

4¼r3

q
1 + 3 sin2 ¸m ;

where the trigonometric identity cos2 ¸m = 1¡ sin2 ¸m was used.
(b) The tangent of the inclination angle is

tanÁi =
Bv
Bh

=
µ

¹0¹

2¼r3 sin¸m

¶ µ
4¼r3

¹0¹ cos¸m
=
2 sin¸m
cos¸m

¶
= 2 tan¸m ;

where tan¸m = (sin¸m)=(cos¸m) was used.

61
(a) The z component of the orbital angular momentum can have the values Lorb,z = m`h=2¼,
where m` can take on any integer value from ¡3 to +3, inclusive. There are seven such values
(¡3, ¡2, ¡1, 0, +1, +2, and +3).
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(b) The z component of the orbital magnetic moment is given by ¹orb,z = ¡m`eh=4¼m, where
m is the electron mass. Since there is a different value for each possible value of m`, there are
seven different values in all.
(c) The greatest possible value of Lorb,z occurs if m` = +3 is 3h=2¼.
(d) The greatest value of ¹orb, z is 3eh=4¼m.
(e) Add the orbital and spin angular momenta: Lnet,z = Lorb,z +Ls;z = (m`h=2¼)+ (msh=2¼). To
obtain the maximum value, setm` equal to +3 andms equal to +12 . The result is Lnet,z = 3:5h=2¼.
(f) Write Lnet,z =Mh=2¼, where M is half an odd integer. M can take on all such values from
¡3:5 to +3:5. There are eight of these: ¡3:5, ¡2:5, ¡1:5, ¡0:5, +0:5, +1:5, +2:5, and +3:5.
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