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5
The magnitude of the magnetic field inside the solenoid is B = ¹0nis, where n is the number
of turns per unit length and is is the current. The field is parallel to the solenoid axis, so the
flux through a cross section of the solenoid is ©B = AsB = ¹0¼r2snis, where As (= ¼r2s) is the
cross-sectional area of the solenoid. Since the magnetic field is zero outside the solenoid, this is
also the flux through the coil. The emf in the coil has magnitude

E = Nd©B
dt

= ¹0¼r2sNn
dis
dt

and the current in the coil is
ic =

E
R
=
¹0¼r

2
sNn

R

dis
dt
;

where N is the number of turns in the coil and R is the resistance of the coil. The current
changes linearly by 3:0A in 50ms, so dis=dt = (3:0A)=(50£ 10¡3 s) = 60A=s. Thus

ic =
(4¼ £ 10¡7 T ¢m=A)¼(0:016m)2(120)(220£ 102 m¡1)

5:3­
(60A=s) = 3:0£ 10¡2 A :

21
(a) In the region of the smaller loop, the magnetic field produced by the larger loop may be taken
to be uniform and equal to its value at the center of the smaller loop, on the axis. Eq. 29–26,
with z = x and much greater than R, gives

B =
¹0iR

2

2x3

for the magnitude. The field is upward in the diagram. The magnetic flux through the smaller
loop is the product of this field and the area (¼r2) of the smaller loop:

©B =
¼¹0ir

2R2

2x3
:

(b) The emf is given by Faraday’s law:

E = ¡d©B
dt

= ¡
µ
¼¹0ir

2R2

2

¶
d

dt

µ
1
x3

¶
= ¡

µ
¼¹0ir

2R2

2

¶ µ
¡ 3
x4
dx

dt

¶
=
3¼¹0ir2R2v

2x4
:

(c) The field of the larger loop is upward and decreases with distance away from the loop. As
the smaller loop moves away, the flux through it decreases. The induced current is directed so
as to produce a magnetic field that is upward through the smaller loop, in the same direction as
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the field of the larger loop. It is counterclockwise as viewed from above, in the same direction
as the current in the larger loop.

29
Thermal energy is generated at the rate E2=R, where E is the emf in the wire and R is the
resistance of the wire. The resistance is given by R = ½L=A, where ½ is the resistivity of copper,
L is the length of the wire, and A is the cross-sectional area of the wire. The resistivity can be
found in Table 26–1. Thus

R =
½L

A
=
(1:69£ 10¡8 ­ ¢m)(0:500m)

¼(0:500£ 10¡3 m)2 = 1:076£ 10¡2­ :

Faraday’s law is used to find the emf. If B is the magnitude of the magnetic field through the
loop, then E = AdB=dt, where A is the area of the loop. The radius r of the loop is r = L=2¼
and its area is ¼r2 = ¼L2=4¼2 = L2=4¼. Thus

E = L
2

4¼
dB

dt
=
(0:500m)2

4¼
(10:0£ 10¡3 T=s) = 1:989£ 10¡4 V :

The rate of thermal energy generation is

P =
E2
R
=
(1:989£ 10¡4 V)2
1:076£ 10¡2­ = 3:68£ 10¡6 W :

37
(a) The field point is inside the solenoid, so Eq. 30–25 applies. The magnitude of the induced
electric field is

E =
1
2
dB

dt
r =

1
2
(6:5£ 10¡3 T=s)(0:0220m) = 7:15£ 10¡5 V=m :

(b) Now the field point is outside the solenoid and Eq. 30–27 applies. The magnitude of the
induced field is

E =
1
2
dB

dt

R2

r
=
1
2
(6:5£ 10¡3 T=s)(0:0600m)

2

(0:0820m)
= 1:43£ 10¡4 V=m :

51
Starting with zero current when the switch is closed, at time t = 0, the current in an RL series
circuit at a later time t is given by

i =
E
R

³
1¡ e¡t=¿L

´
;

where ¿L is the inductive time constant, E is the emf, and R is the resistance. You want to
calculate the time t for which i = 0:9990E=R. This means

0:9990
E
R
=
E
R

³
1¡ e¡t=¿L

´
;
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so
0:9990 = 1¡ e¡t=¿L

or
e¡t=¿L = 0:0010 :

Take the natural logarithm of both sides to obtain ¡(t=¿L) = ln(0:0010) = ¡6:91. That is, 6:91
inductive time constants must elapse.

55
(a) If the battery is switched into the circuit at time t = 0, then the current at a later time t is
given by

i =
E
R

³
1¡ e¡t=¿L

´
;

where ¿L = L=R. You want to find the time for which i = 0:800E=R. This means
0:800 = 1¡ e¡t=¿L

or
e¡t=¿L = 0:200 :

Take the natural logarithm of both sides to obtain ¡(t=¿L) = ln(0:200) = ¡1:609. Thus

t = 1:609¿L =
1:609L
R

=
1:609(6:30£ 10¡6 H)

1:20£ 103­ = 8:45£ 10¡9 s :

(b) At t = 1:0¿L the current in the circuit is

i =
E
R

¡
1¡ e¡1:0¢ = µ 14:0V

1:20£ 103­
¶¡
1¡ e¡1:0¢ = 7:37£ 10¡3 A :

59
(a) Assume i is from left to right through the closed switch. Let i1 be the current in the resistor
and take it to be downward. Let i2 be the current in the inductor and also take it to be downward.
The junction rule gives i = i1 + i2 and the loop rule gives i1R¡L(di2=dt) = 0. Since di=dt = 0,
the junction rule yields (di1=dt) = ¡(di2=dt). Substitute into the loop equation to obtain

L
di1
dt
+ i1R = 0 :

This equation is similar to Eq. 30–44, and its solution is the function given as Eq. 30–45:

i1 = i0e¡Rt=L ;

where i0 is the current through the resistor at t = 0, just after the switch is closed. Now, just
after the switch is closed, the inductor prevents the rapid build-up of current in its branch, so at
that time, i2 = 0 and i1 = i. Thus i0 = i, so

i1 = ie¡Rt=L
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and
i2 = i¡ i1 = i

h
1¡ e¡Rt=L

i
:

(b) When i2 = i1,
e¡Rt=L = 1¡ e¡Rt=L ;

so
e¡Rt=L =

1
2
:

Take the natural logarithm of both sides and use ln(1=2) = ¡ ln 2 to obtain (Rt=L) = ln 2 or

t =
L

R
ln 2 :

63
(a) If the battery is applied at time t = 0, the current is given by

i =
E
R

³
1¡ e¡t=¿L

´
;

where E is the emf of the battery, R is the resistance, and ¿L is the inductive time constant. In
terms of R and the inductance L, ¿L = L=R. Solve the current equation for the time constant.
First obtain

e¡t=¿L = 1¡ iRE ;
then take the natural logarithm of both sides to obtain

¡ t

¿L
= ln
∙
1¡ iRE

¸
:

Since

ln
∙
1¡ iRE

¸
= ln
∙
1¡ (2:00£ 10

¡3 A)(10:0£ 103­)
50:0V

¸
= ¡0:5108 ;

the inductive time constant is ¿L = t=0:5108 = (5:00£ 10¡3 s)=(0:5108) = 9:79£ 10¡3 s and the
inductance is

L = ¿LR = (9:79£ 10¡3 s)(10:0£ 103­) = 97:9H :
(b) The energy stored in the coil is

UB =
1
2
Li2 =

1
2
(97:9H)(2:00£ 10¡3 A)2 = 1:96£ 10¡4 J :

69
(a) At any point, the magnetic energy density is given by uB = B2=2¹0, where B is the magnitude
of the magnetic field at that point. Inside a solenoid, B = ¹0ni, where n is the number of turns
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per unit length and i is the current. For the solenoid of this problem, n = (950)=(0:850m) =
1:118£ 103 m¡1. The magnetic energy density is

uB =
1
2
¹0n

2i2 =
1
2
(4¼ £ 10¡7 T ¢m=A)(1:118£ 103 m¡1)2(6:60A)2 = 34:2 J=m3 :

(b) Since the magnetic field is uniform inside an ideal solenoid, the total energy stored in the
field is UB = uBV , where V is the volume of the solenoid. V is calculated as the product of the
cross-sectional area and the length. Thus

UB = (34:2 J=m3)(17:0£ 10¡4 m2)(0:850m) = 4:94£ 10¡2 J :

73
(a) The mutual inductance M is given by

E1 =M di2
dt
;

where E1 is the emf in coil 1 due to the changing current i2 in coil 2. Thus

M =
E1

di2=dt
=
25:0£ 10¡3 V
15:0A=s

= 1:67£ 10¡3 H :

(b) The flux linkage in coil 2 is

N2©21 =Mi1 = (1:67£ 10¡3 H)(3:60A) = 6:01£ 10¡3 Wb :

75
(a) Assume the current is changing at the rate di=dt and calculate the total emf across both coils.
First consider the left-hand coil. The magnetic field due to the current in that coil points to the
left. So does the magnetic field due to the current in coil 2. When the current increases, both
fields increase and both changes in flux contribute emf’s in the same direction. Thus the emf in
coil 1 is

E1 = ¡ (L1 +M ) di
dt
:

The magnetic field in coil 2 due to the current in that coil points to the left, as does the field in
coil 2 due to the current in coil 1. The two sources of emf are again in the same direction and
the emf in coil 2 is

E2 = ¡ (L2 +M ) di
dt
:

The total emf across both coils is

E = E1 + E2 = ¡ (L1 + L2 + 2M ) di
dt
:

This is exactly the emf that would be produced if the coils were replaced by a single coil with
inductance Leq = L1 + L2 + 2M .
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(b) Reverse the leads of coil 2 so the current enters at the back of the coil rather than the front
as pictured in the diagram. Then the field produced by coil 2 at the site of coil 1 is opposite the
field produced by coil 1 itself. The fluxes have opposite signs. An increasing current in coil 1
tends to increase the flux in that coil but an increasing current in coil 2 tends to decrease it. The
emf across coil 1 is

E1 = ¡ (L1 ¡M ) di
dt
:

Similarly the emf across coil 2 is

E2 = ¡ (L2 ¡M ) di
dt
:

The total emf across both coils is

E = ¡ (L1 + L2 ¡ 2M ) di
dt
:

This the same as the emf that would be produced by a single coil with inductance Leq = L1 +
L2 ¡ 2M .

79
(a) The electric field lines are circles that are concentric with the cylindrical region and the
magnitude of the field is uniform around any circle. Thus the emf around a circle of radius r
is E = H ~E ¢ d~s = 2¼rE. Here r is inside the cylindrical region so the magnetic flux is ¼r2B.
According to Faraday’s law 2¼rE = ¡¼r2(dB=dt) and

E = ¡1
2r
dB

dt
= ¡1

2(0:050m)(¡10£ 10¡3 T=s) = 2:5£ 10¡4 V=m :
Since the normal used to compute the flux was taken to be into the page, in the direction of the
magnetic field, the positive direction for the electric is clockwise. The calculated value of E is
positive, so the electric field at point a is toward the left and ~E = ¡(2:5£ 10¡4 V=m) î.
The force on the electron is ~F = ¡e ~E and, according to Newton’s second law, its acceleration is

~a =
~F

m
= ¡e

~E

m
= ¡(1:60£ 10

¡19 C)(¡2:5£ 10¡4 V=m) î
9:11£ 10¡31 kg = (4:4£ 107 m=s2) î :

The mass and charge of an electron can be found in Appendix B.
(b) The electric field at r = 0 is zero, so the force and acceleration of an election placed at point
b are zero.
(c) The electric field at point c has the same magnitude as the field at point a but now the field
is to the right. That is ~E = (2:5£ 10¡4 V=m) î and ~a = ¡(4:4£ 107 m=s2) î.

81
(a) The magnetic flux through the loop is ©B = BA, where B is the magnitude of the magnetic
field and A is the area of the loop. The magnitude of the average emf is given by Faraday’s law
: Eavg = B¢A=¢t, where ¢A is the change in the area in time ¢t. Since the final area is zero,
the change in area is the initial area and Eavg = BA=¢t = (2:0 T)(0:20m)2=(0:20 s) = 0:40V.
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(b) The average current in the loop is the emf divided by the resistance of the loop: iavg =
Eavg=R = (0:40V)=(20£ 10¡3­) = 20A.

85
(a), (b), (c), (d), and (e) Just after the switch is closed the current i2 through the inductor is zero.
The loop rule applied to the left loop gives E ¡I1R1 = 0, so i1 = E=R1 = (10V)=(5:0­) = 2:0A.
The junction rule gives is = i1 = 2:0A. Since i2 = 0, the potential difference across R2 is
V2 = i2R2 = 0. The potential differences across the inductor and resistor must sum to E and, since
V2 = 0, VL = E = 10V. The rate of change of i2 is di2=dt = VL=L = (10V)=(5:0H) = 2:0A=s.
(g), (h), (i), (j), (k), and (l) After the switch has been closed for a long time the current i2
reaches a constant value. Since its derivative is zero the potential difference across the inductor
is VL = 0. The potential differences across both R1 and R2 are equal to the emf of the battery,
so i1 = E=R1 = (10V)=(5:0­) = 2:0A and i2 = E=R2 = (10V)=(10­) = 1:0A. The junction
rule gives is = i1 + i2 = 3:0A.

95
(a) Because the inductor is in series with the battery the current in the circuit builds slowly and
just after the switch is closed it is zero.
(b) Since all currents are zero just after the switch is closed the emf of the inductor must match the
emf of the battery in magnitude. Thus L(dibat=dt) = E and dibat = E=L = (40V)=(50£10¡3 H) =
8:0£ 102 A=s.
(c) Replace the two resistors in parallel with their equivalent resistor. The equivalent resistance
is

Req =
R1R2
R1 +R2

=
(20 k­)(20 k­)
20 k­ + 20 k­

= 10 k­ :

The current as a function of time is given by

ibat =
E
Req

h
1¡ e¡t=¿L

i
;

where ¿L is the inductive time constant. Its value is ¿L = L=Req = (50£ 10¡3 H)=(10£ 103­) =
5:0£ 10¡6 s. At t = 3:0£ 10¡6 s, t=¿L = (3:0)=(5:0) = 0:60 and

ibat =
40V

10£ 103­
£
1¡ e¡0:60¤ = 1:8£ 10¡3 A :

(d) Differentiate the expression for ibat to obtain
dibat
dt

=
E
Req

1
¿L
e¡t=¿L =

E
L
e¡t=¿L ;

where ¿L = L=Req was used to obtain the last form. At t = 3:0£ 10¡6 s
dibat
dt

=
40V

50£ 10¡3 He
¡0:60 = 4:4£ 102 A=s :

(e) A long time after the switch is closed the currents are constant and the emf of the inductor is
zero. The current in the battery is ibat = E=Req = (40V)=(10£ 103­) = 4:0£ 10¡3 A.
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(f) The currents are constant and dibat=dt = 0.

97
(a) and (b) Take clockwise current to be positive and counterclockwise current to be negative.
Then according to the right-hand rule we must take the normal to the loop to be into the page,
so the flux is negative if the magnetic field is out of the page and positive if it is into the page.
Assume the field in region 1 is out of the page. We will obtain a negative result for the field
if the assumption is incorrect. Let x be the distance that the front edge of the loop is into
region 1. Then while the loop is entering this region flux is ¡B1Hx and, according to Faraday’s
law, the emf induced around the loop is E = B1H(dx=dt) = B1Hv. The current in the loop is
i = E=R = B1Hv=R, so

B1 =
iR

Hv
=
(3:0£ 10¡6 A)(0:020­)
(0:0150m)(0:40m=s)

= 1:0£ 10¡5 T :

The field is positive and therefore out of the page.
(c) and (d) Assume that the field B2 of region 2 is out of the page. Let x now be the distance the
front end of the loop is into region 2 as the loop enters that region. The flux is ¡B1H(D¡x)¡
B2Hx, the emf is E = ¡B1Hv +B2Hv = (B2¡B1)Hv, and the current is i = (B2¡B1)Hv=R.
The field of region 2 is

B2 = B1 +
iR

Hv
= 1:0£ 10¡5 T + (¡2:0£ 10

¡6 A(0:020­)
(0:015m)(0:40m=s)

= 3:3£ 10¡6 T :

The field is positive, indicating that it is out of the page.
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